
TWMS J. Pure Appl. Math., V.13, N.1, 2022, pp.25-37

ON SPACE-LIKE GENERALIZED CONSTANT RATIO HYPERSUFACES IN

MINKOWSKI SPACES

ALEV KELLECI AKBAY1, NURETTIN CENK TURGAY2, MAHMUT ERGÜT3

Abstract. In this work, we move the study of generalized constant ratio hypersurfaces started

in [6] into the Minkowski space. First, we get some geometrical properties of a non-degenerated

GCR hypersurface in an arbitrary dimensional Minkowski space. Then, we obtain the complete

classification of space-like GCR hypersurfaces with vanishing Gauss-Kronecker curvature in the

Minkowski space En
1 . We also give some explicit examples.
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1. Introduction

The position vector is one of most elementary geometrical objects of a submanifold of a semi-

Euclidean space. In [2] B.-Y. Chen introduced the notion of constant ratio submanifolds. By

the definition, a submanifold of a Euclidean space is said to be of constant ratio (CR) if the

ratio of the length of the tangential and normal components of its position vector is constant

(see also [1]).

By using this idea, in [6] Fu and Munteanu gave the definition of generalized constant ratio

(GCR) surfaces in the Euclidean space E3. Later, in [6, 7], classification of GCR surfaces in the

Minkowski space E3
1 was obtained. Recently, in [10] the following definition is given.

Definition 1.1. [10] Let M be a submanifold in Em and x its position vector. M is said to

be a GCR submanifold if the tangential part xT of x is one of principal directions of all shape

operators of M .

GCR surfaces in Euclidean 3-space E3 are related with constant slope surfaces introduced by

M. I. Munteanu in [12] because of the following property: Let U and x denote the projection of

position vector on the tangent plane of the surface and a generic point in ambient space, respec-

tively. If the projection U makes constant angle with the normal vector of the surface at that

point, then U is a canonical principal direction of the surface with the corresponding principal

curvature being different from zero. We would like to note that the complete classification of

constant slope surfaces in E3
1 is obtaind by Fu and Wang in [8, 9],

In 2003, B.-Y. Chen established the complete classification of space-like CR submanifolds in

pseudo-Euclidean spaces in [4]. Since the position vector of a CR hypersurface is one of principal

directions, one can conclude that a CR hypersurface is GCR. However, the converse is not true
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in general, [6]. In the present paper, we get a classifiction of GCR hypersurfaces in Minkowski

spaces.

This paper has is divided into 4 sections. In Sect. 2, after we introduce the notation that

we are going to use, we give a brief summary of basic definitions in theory of submanifolds of

semi-Euclidean spaces. In Sect. 3, we obtain some of geometrical properties of space-like GCR

hypersurfaces of an arbitrary dimensional Minkowski space. In Sect. 4, we obtain the complete

classification of space-like GCR hypersurfaces of the Minkowski 4-space.

2. Preliminaries

In this section, we present some of basic facts and definitions in the theory of submanifolds

of pseudo-Euclidean spaces.

2.1. Isometric immersions into pseudo-Riemannian space forms. Let Em
s denote the

pseudo-Euclidean m-space with the canonical pseudo-Euclidean metric tensor g of index s given

by

g̃ = ⟨ , ⟩ = −
s∑

i=1

dx2i +

m∑
j=s+1

dx2j .

A non-zero vector v in Em
s is said to be space-like, time-like and light-like (null) regarding to

⟨v, v⟩ > 0 , ⟨v, v⟩ < 0 and ⟨v, v⟩ = 0, respectively. Note that v is said to be causal if it is not

space-like.

Let M̃m
s,c denote the pseudo-Riemannian space form of dimension m, index s and curvature c.

In fact, we have

M̃m
s,r−2 = Sms (r−2) = {x ∈ Em+1

s : ⟨x, x⟩ = r2},

M̃m
s,−r−2 = Hm

s−1(r
−2) = {x ∈ Em+1

s : ⟨x, x⟩ = −r2},

when c > 0 or c > 0, respectively. Sm−1
s (r2) and Hm−1

s−1 (−r2) are the complete pseudo-

Riemannian manifolds with constant sectional curvatures r2 and −r2, respectively. In the

Riemannian case, we are going to use the notation Em
0 = Em, Hm−1

0 (−r2) = Hm−1(−r2) and

Sm−1
0 (r2) = Sm−1(r2).

For a given isometric immersion x : (Ω, g) ↪→ M̃m
s,c, we denote the normal bundle of x by

NxΩ. Then, Gauss and Weingarten formulas are given by

∇̃XY =∇XY + αx (X,Y ) ,

∇̃Xξ =−Ax
ξ (X) +∇⊥

Xξ,
(1)

for any vector fields X,Y tangent to M = x(Ω), where ∇ and ∇̃ denote the Levi-Civita con-

nections of M and En+1
1 , respectively, αx, and ∇⊥ stand for the second fundamental form and

normal connection of x, respectively and Ax
ξ is the shape operator along ξ ∈ NxΩ. αx and Ax

are related by ⟨
Ax

ξX,Y
⟩
= ⟨αx (X,Y ) , ξ⟩ . (2)

When x is an isometric immersion into Em
1 , M is going to be said to lay in the space-like

(resp. time-like) cone if ⟨x, x⟩ > 0 (resp. ⟨x, x⟩ < 0).
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2.2. Space-like Hypersurfaces in the Minkowski Space. Let M be an oriented hypersur-

face in En+1
1 with the position vector x and N ∈ NxΩ be unit normal vector associated with

the orientation of M . In this case, (1) turns into

∇̃XY = ∇XY + h (X,Y ) , (3)

∇̃XN = −S(X), (4)

where h = αx and S = Ax
N . The Gauss and Codazzi equations are given, respectively, by

⟨R(X,Y )Z,W ⟩ = ⟨h(Y, Z), h(X,W )⟩ − ⟨h(X,Z), h(Y,W )⟩, (5)

(∇̃Xh)(Y, Z) = (∇̃Y h)(X,Z), (6)

where R is the curvature tensor of M and ∇̃h is defined by

(∇̃Xh)(Y, Z) = ∇⊥
Xh(Y,Z)− h(∇XY, Z)− h(Y,∇XZ).

M is said to be space-like (resp.time-like) if its induced metric g = g̃|M is Riemannian (resp.

Lorentzian). This is equivalent to being time-like (resp. space-like) of N at each point of

M . We are going to consider the case that M is space-like. Then, the shape operator S is

diagonalizable, i.e., there exists a local orthonormal frame field {e1, e2, . . . , en;N} such that

Sei = kiei, i = 1, 2, . . . , n. In this case, the vector field ei and smooth function ki are called a

principal direction and a principal curvature of M , respectively. The connection forms ωij are

defined by

ωij(ek) = ⟨∇ekei, ej⟩,

and satisfies ωij = −ωji. On the other hand, the Codazzi equations (6) for X = Z = ej , Y = ei
and X = ei, Y = ej , Z = ek imply

ei(kj) = ωij(ej)(ki − kj), i, j = 1, . . . , n (7)

and

ωij(ek)(ki − kj) = ωik(ej)(ki − kk), i, j, k = 1, . . . , n, (8)

respectively.

3. GCR Hypersurfaces of Minkowski Spaces

In this section, we consider GCR hypersurfaces in a Minkowski space En+1
1 .

Let M be a hypersurface in a semi-Euclidean space En+1
s and x its position vector. Since x

can be considered as a vector field defined on M , it can be expressed as

x = xT + x⊥, (9)

where xT and x⊥ denote the tangential and normal parts of x.

Remark 3.1. If xT = 0 in the decomposition (9), i.e., x is normal to M , then we have ⟨x, x⟩ =
const which yields that M is an open part of either Sn(r−2) or Hn(−r−2) for some r > 0.

We have the following result for the case of being light-like of xT .

Theorem 3.1. Let M be a non-degenerated hypersurface in En+1
1 with position vector x. If M

is GCR, then the tangential part xT of x can not be light-like.



28 TWMS J. PURE APPL. MATH., V.13, N.1, 2022

Proof. Consider a non-degenerated hypersurface in En+1
1 such that xT is light-like. Then, we

have M is time-like and

x = f1 + ⟨x, x⟩N (10)

for a light-like tangent vector field f1.

Towards contradiction, assume that M is GCR, i.e., f1 is an eigenvector of S. Then, we have

Sf1 = k1f1 for a smooth function k1. Moreover, there exists a light-like tangent vector field f2
such that ⟨f1, f2⟩ = −1 and ⟨Sf1, f2⟩ = −k1 which implies h(f1, f2) = −k1N . By applying f2
to (10) and considering ∇̃f2x = f2, we obtain

f2 = ∇f2f1 + h(f1, f2) + f2 (⟨x, x⟩)N − ⟨x, x⟩Sf2. (11)

The normal part of this equation gives

k1 = f2 (⟨x, x⟩) = −2.

However, by a further computation using (11), we get

−1 = ⟨x, x⟩⟨Sf2, f1⟩

which implies being constant of ⟨x, x⟩. Therefore, M is an open part of either Sn1 (r−2) or

Hn(−r−2) for some r > 0 which yields x ∈ NxΩ, i.e., xT = f1 = 0. Hence, we have a

contradiction. �

Remark 3.2. Because of Remark 3.1 and Theorem 3.1, we, locally, assume ∥xT ∥ ≠ 0 in the

remaining part of this paper.

We also need the following lemma given in [3].

Lemma 3.1. Let x : M −→ Em
υ be an isometric immersion of a Riemannian n-manifold into the

pseudo-Euclidean space Em
υ . Then, on the open subset U =

{
p ∈ M : xT ̸= 0

}
the distribution

D defined by Dp =
{
X ∈ TpU :

⟨
X,xT

⟩
= 0

}
is an integrable distribution, [3].

In the remaining part of this paper we, put

e1 =
xT

|⟨xT , xT ⟩|1/2
,

Then, we have the following result obtained directly from Lemma 3.1.

Corollary 3.1. Let M be a GCR hypersurface in En+1
1 Minkowski spaces. Then, D = span {e2, . . . , en}

and D⊥ = span {e1} are integrable distributions on M .

Now, we obtain some necessary and sufficient conditions for a hypersurface in En+1
1 to be

GCR.

Proposition 3.1. Let M be an oriented hypersurface in the Minkowski space En+1
1 and x its

position vector. Then, M is a GCR hypersurface if and only if a curve α is a geodesic of M

whenever it is an integral curve of e1.

Proof. We are going to consider being space-like or time-like of xT , separately.

Case 3.1. Let xT is time-like. In this case, e1 = xT /(−⟨xT , xT ⟩)1/2 is time-like and M is

Lorentzian. Thus, we have

x = −⟨x, e1⟩e1 + ⟨x,N⟩N.

Since ∇̃e1x = e1, this equation yields

e1 = (1− ⟨x,N⟩⟨Se1, e1⟩)e1 − ⟨x, e1⟩∇̃e1e1 + ⟨x, Se1⟩N − ⟨x,N⟩Se1.
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The tangential part of this equation yields Se1 = k1e1 if and only if∇e1e1 = 0 which is equivalent

to being geodesic of all integral curves of e1.

Case II. Let xT is space-like. In this case, e1 = xT /(⟨xT , xT ⟩)1/2 is space-like. Thus, we have

x = ⟨x, e1⟩e1 + ε⟨x,N⟩N, (12)

where ε is either 1 or -1 regarding to being time-like or space-like of M , respectively.

Similar to Case I, we obtain Se1 = k1e1 if and only if ∇e1e1 = 0. Consequently, the proof is

completed. �

Now, let M be an oriented space-like GCR hypersurface in En+1
1 with the position vector,

define a function µ by

µ =
√
|⟨x, x⟩|,

and, locally, assume µ > 0. Consider a local orthonormal frame field {e1, e2, . . . , en;N} consist-

ing of principal directions of M and let k1, k2, . . . , kn be corresponding principal curvatures.

Case I. M lays on the space-like cone of En+1
1 . In this case, (9) turns into

x = µ cosh θe1 − µ sinh θN, (13)

for a smooth function θ and we have

e1(µ) = cosh θ,

ej(µ) =0, j = 2, 3, . . . , n.
(14)

By applying ei to (13) and considering (14), we obtain

ei =
(
δ1i cosh

2 θ + µ sinh θei(θ)
)
e1 + µ cosh θ∇eie1 + µ sinh θkiei

+ µ cosh θh(ei, e1)− (δ1i cosh θ sinh θ + µ cosh θei(θ))N,

from which we get

k1 = −e1(θ)−
sinh θ

µ
, (15a)

ej(θ) = 0, (15b)

∇eje1 =
1− kjµ sinh θ

µcoshθ
ej , j = 2, 3, . . . , n. (15c)

Case II. M lays on the time-like cone of En+1
1 . In this case, (9) turns into

x = µ sinh θe1 − µ cosh θN. (16)

By a similar way to the Case I, we get

e1(µ) =− sinh θ,

ej(µ) =0, j = 2, 3, . . . , n,
(17)

and

k1 = −e1(θ) +
cosh θ

µ
, (18a)

ej(θ) = 0, (18b)

∇eje1 =
1− kjµ cosh θ

µ sinh θ
ej , j = 2, 3, . . . , n. (18c)

By considering (15b) and (18b), we obtain

Proposition 3.2. A space-like hypersurface M in the Minkowski space En+1
1 is GCR if and

only if Y (θ) = 0, whenever Y ∈ D, where D is the distribution defined in Lemma 3.1.
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We also would like to state the following result which is a direct result of (15) and (18).

Proposition 3.3. Let M be a space-like GCR hypersurface in the Minkowski space En+1
1 and

e1 is a unit normal vector field along xT . Then there exists a local coordinate function ŝ such

that e1 = ∂ŝ.

Proof. We consider the case ⟨x, x⟩ < 0. The other case follows from an analogous computation.

Let ζ1, ζ2, . . . , ζn be the dual base of e1, e2, . . . , en. By a direct computation using (17) and

(18c) , we obtain dζ1 = 0 , i.e., ζ1 is closed. Poincare Lemma (see in [5]) yields that it is exact,

i.e., there exists a local coordinate function s such that ζ1 = dŝ. �

4. GCR hypersurfaces in E4
1

In this section, we consider space-like GCR hypersurfaces with vanishing Gauss-Kronecker

curvature in the Minkowski 4-space.

4.1. Examples of GCR hypersurfaces. Before we proceed to our main result, we would

like to present the following examples of GCR hypersurfaces with vanishing Gauss-Kronecker

curvature.

The following two isoparametric hypersurfaces are trivially GCR.

Example 4.1. Let y = (x1, x2, x3) : Ω1 ↪→ E3
1 be an isometric immersion such that y(Ω1) ⊂

H2(−c2) and dimΩ1 = 2. Consider the the hypercylinder M given by x : Ω1 × I ↪→ E4
1,

x(s, t, u) =
(
x1(s, t), x2(s, t), x3(s, t), u

)
, (s, t) ∈ Ω1, u ∈ I,

where we put either I = (−1, 1) or I = (1,∞). Note that M is an open part of H2 × E1 and its

unit normal vector field is

N(s, t) = c
(
x1(s, t), x2(s, t), x3(s, t), 0

)
.

Therefore, x can be written as x = u
∂

∂u
+

1

c
N . Since the tangent vector

∂

∂u
is the principal

direction of M corresponding to the principal curvature k1 = 0, the hypercylinder M is a GCR

hypersurface with vanishing Gauss-Kronecker curvature.

Example 4.2. If M is an open part of H(−c)× E2, then it can be parametrized by x(s, t, u) =

(c sinh t, c cosh t, s, u). Similar to Example 4.1, M is a GCR hypersurface with vanishing Gauss-

Kronecker curvature.

Example 4.3. Consider an isometric immersion α̃ : (I, a2du2) ↪→ S31(1) with flat normal bundle,

where I is an open interval and a is a non-vanishing function. Let F̃1, F̃2 ∈ N α̃I be parallel

orthonormal vector fields such that ⟨F̃1, F̃1⟩ = −1. Put α = α̃ ◦ i and Fj = i∗F̃j , j = 1, 2, where

i : S3
1(1) ⊂ E4

1 is the inclusion. Consider the hypersurface M = x(Ω) given by x : Ω ↪→ E4
1,

x(s, t, u) = sα(u)− c
(
cosh

(
t

c

)
F1(u) + sinh

(
t

c

)
F2(u)

)
, (19)

where Ω = J × R × I, c ∈ (0,∞) and we put either J = (−c, c) or I = (c,∞). One can check

that the unit normal vector field of M is

N(s, t, u) = cosh

(
t

c

)
F1(u) + sinh

(
t

c

)
F2(u).
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Furthermore, a direct computation yields that e1 = 1
sx

T = x∗(∂s) is the principal direction of

M corresponding to the principal curvature k1 = 0. Consequently, the hypersurface M is GCR

and its Gauss-Kronecker curvature vanishes identically. We note that one of other principal

curvatures of M is k2 =
1
c with the corresponding principle direction e2 = ∂t.

Example 4.4. Consider an isometric immersion ỹ : (Ω1, g) ↪→ S31(1) and let Ñ ∈ NyΩ1 be unit,

where g is a Riemannian metric on Ω1 and dimΩ1 = 2. Put y = ỹ ◦ i and N = i∗Ñ , j = 1, 2,

where i : S3
1(1) ⊂ E4

1 is the inclusion and consider the hypersurface M = x(Ω) given by x : Ω ↪→
E4
1

x(s, t, u) = sy(t, u)− cN(t, u), (20)

for a non-zero constant c, where Ω = Ω1 × I and we put either J = (−c, c) or I = (c,∞). By

a direct computation, we see that N is the unit normal of the hypersurface of M which implies

xT = sx∗(∂s). Furthermore, from (20) we obtain that xss = 0 and ⟨xst, N⟩ = 0 and ⟨xtt, N⟩ = 0.

So, h(x∗(∂s), X) = 0 is satisfied for all tangent vector X on M which yields that S(xT ) = 0.

Consequently, the Gauss-Kronecker curvature of the hypersurface M vanishes and ∂s = xT is a

principal direction of the hypersurface M .

4.2. A Classification of GCR Hypersurfaces in E4
1. In this subsection we obtain the com-

plete classification of space-like GCR hypersurfaces with vanishing Gauss-Kronecker curvature

in E4
1.

First, we obtain the following lemma.

Lemma 4.1. Let M be a space-like GCR hypersurface in E4
1 and {e1, e2, e3;N} be the frame

field consisting of principal directions of M with corresponding principal curvatures k1, k2, . . . , kn.

Then, the Levi-Civita connection ∇̃ of E4
1 satisfies

∇e1e1 = 0, ∇e1e2 = ω23(e1)e3, ∇e1e3 = −ω23(e1)e2, (21a)

∇e2e1 = ω12(e2)e2, ∇e2e2 = −ω12(e2)e1 + ω23(e2)e3, (21b)

∇e3e1 = ω13(e3)e3, ∇e3e3 = −ω13(e3)e1 − ω23(e3)e2, (21c)

∇e2e3 = −ω23(e2)e2, ∇e3e2 = ω23(e3)e3. (21d)

Furthermore the function ω23(e1) k1, k2 and k3 satisfy

ω23(e1)(k2 − k3) = 0, e2(k1) = e3(k1) = 0, (22)

and for j = 2, 3 we have

ω1j(ej) =


1− µ sinh θkj

µ cosh θ
if M lays on the space-like cone,

1− µ cosh θkj
µ sinh θ

if M lays on the time-like cone.
(23)

Proof. Because of Proposition 3.1, we have

ω12(e1) = 0, (24a)

which gives (21a). Furthermore, (15c) and (18c) give

ω13(e2) = ω12(e3) = 0, (24b)

which implies (21b), (21c) and (23). On the other hand, we combine (7) and (8) with (24) to

get (22). �
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Lemma 4.2. Let M be a space-like hypersurface in the Minkowski space E4
1. If the Gauss-

Kronecker curvature of M vanishes, then the principal curvature k1 of M vanishes identically

and the equation

e1(θ) =


−sinh θ

µ
if M lays on the space-like cone,

cosh θ

µ
if M lays on the time-like cone

(25)

is satisfied.

Proof. By combining (13), (16) and (23) with the Codazzi equation (7) for i = 1, j = 2, we get

e1(k2) =
(1− ⟨x,N⟩k2) (k1 − k2)

⟨x, e1⟩
. (26)

We are going to show that the open subset O = {p ∈ M |k1(p) ̸= 0} of M is empty. Suppose

that M is a space-like hypersurface with vanishing Gauss-Kronecker curvature, i.e., k1k2k3 = 0.

Then, without loss of generality, we may assume the existance of a connected open subset O2

of O on which k2 = 0 is satisfied. However, in this case (26) gives k1 = 0 on O2 which yields a

contradiction unless O is empty. Hence, we have k1 = 0 and (15a) and (18a) implies (25). �

Next, by considering Lemma 4.1 and Lemma 4.2, we construct a local coordinate system on

M .

Proposition 4.1. Let M be a space-like GCR hypersurface with vanishing Gauss-Kronecker

curvature in the Minkowski space E4
1. Then, there exists a local coordinate system s, t, u on M

such that e1 = ∂s and

span {e2, e3} = span {∂t, ∂u}.

Moreover, the position vector x of M is decomposed as

x(s, t, u) = se1(t, u)− cN(t, u), (27)

for a non-zero constant c.

Proof. Let M be a space-like hypersurface with vanishing Gauss-Kronecker curvature in the

Minkowski space E4
1. The the equation (25) is satisfied because of Lemma 4.2. On the other

hand, because of Corollary 3.1, the distributions D = span {e2, e3} and D⊥ = span {e1} are

integrable distributions on M . Therefore, there exist (ŝ, t, u) local coordinate system such that

D⊥ = span {∂∂ŝ} and D = span {∂t, ∂u} (See [11, Lemma on p. 182]). Consequently, we have

e1 = a∂ŝ (28)

for a smooth functions a. Note that Lemma 4.1 implies

[e1, Y ] ∈ D whenever Y ∈ D. (29)

By combining (28) with (29), we get ∂t(a) = ∂u(a) = 0, i.e., a(ŝ, t, u) = a(ŝ). Therefore, by

defining s by

s =

ŝ∫
s0

dξ

a(ξ)
,

we get e1 = ∂s. Hence, the local coordinate system (s, t, u) satisfies the desired properties.

In order to obtain (27) we are going to consider the cases ⟨x, x⟩ > 0 and ⟨x, x⟩ < 0 separately.
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Case I. M lays on the space-like cone. In this case, x can be decomposes as given in (13). By

considering (25) and equations given in (14), we get

e1(µ cosh θ) = 1, e1(µ sinh θ) = 0. (30)

Therefore, µ cosh θ = f for a function f satisfying e1(f) = 1, ej(f) = 0 for j = 2, 3 and

µ sinh θ = c for a non-zero constant c. By considering, the local coordinate system that we have

obtained, we can assume f = s. Hence, (13) gives

x(s, t, u) = se1(s, t, u)− cN(t, u). (31)

On the other hand, the first equation in (21a) gives
∂e1
∂s

= 0. Hence, (31) turns into (27).

Case II. M lays on the time-like cone. In this case, x can be decomposes as given in (16). By

an analogous computation we get

e1(µ sinh θ) = 1, e1(µ cosh θ) = 0. (32)

Similar to the Case I, (13) and (32) imply (31) which gives (27). �

Let M be a GCR hypersurface with vanishing Gauss-Kronecker curvature in E4
1. Then, in

terms of local coordinate system (s, t, u) that we have constructed in Proposition 4.1, (23) turns

into

ω1j(ej) =
1− ckj

s
, j = 2, 3. (33)

Therefore, the first equations in (21b), (21c) become

∇eje1 =
1− ckj

s
e2. (34)

Therefore (∇eje1)p = 0 if and only if Sp(ej) =
1
cej for any p ∈ M . Hence, we have

Corollary 4.1. Consider a GCR hypersurface M with vanishing Gauss-Kronecker curvature in

E4
1 with the position vector x given in (27) for a non-zero constant c. For a p ∈ M define Vp as

a kernel of the endomorphism

Φ : Dp → Dp, Φ(Yp) = ∇Ype1.

Then, Vp = Wp, where Wp is the eigenspace of Sp corresponding to 1
c , i.e., Wp = {Yp ∈

TpM |Sp(Yp) =
1
cYp}.

Now, we are ready to prove the classification theorem.

Theorem 4.1. Let M be a space-like hypersurface with vanishing Gauss-Kronecker curvature

in the Minkowski space E4
1. If M is a GCR hypersurface, then it is locally congruent to one of

the following four types of hypersurfaces.

(i) An open part of the hypercylinder H2(−c2)× E1 given in Example 4.1,

(ii) An open part of the hypercylinder H(−c)× E2 given in Example 4.2,

(iii) A hypersurface parametrized with (19) in Example 4.3,

(iv) A hypersurface parametrized with (20) in Example 4.4.



34 TWMS J. PURE APPL. MATH., V.13, N.1, 2022

Proof. Let p ∈ M and put dimVp = r. Consider a local coordinate system (s, t, u) constructed

in Proposition 4.1. Then, we have

e1 =
∂

∂s
, (35a)

e2 = a22
∂

∂t
+ a23

∂

∂u
, (35b)

e3 = a32
∂

∂t
+ a33

∂

∂u
(35c)

for some smooth functions a22, a23, a32, a33. Note that there exists a neighborhood Np on p such

that dimVq = r whenever q ∈ Np because of Corollary 4.1. We consider the cases r = 0, r = 1

and r = 2, separately and find a parametrization of Np for each cases.

Case 1. r = 2. In this case, Corollary 4.1 implies that k2 = k3 =
1

c
on Np. Therefore, Np is a

space-like isoparametric hypersurface with principal curvatures 0, 1/c, 1/c. Consequently, Np is

a part of the hypercylinder H2(−c2) × E1 given in Example 4.1 (see [13]). Hence, we have the

case (i) of the theorem.

Case 2. r = 1. Without loss of generality, we assume ∇e2e1 = 0 and ∇e3e1 ̸= 0. In this case,

Corollary 4.1 implies k2 =
1
c ̸= k3 on Np. We have two subcases:

Case 2a. k3 vanishes identically on Np. In this case, similar to the Case 1, Np is an open part

of H(−c)× E2. Hence, we have the case (ii) of the theorem.

Case 2b. There exists a point q ∈ Np such that k3(q) ̸= 0. In this case, by shrinking Np if

necessary, we assume that k3 doesn’t vanish on Np. Then, k3 is not constant. Therefore, (22)

and the Codazzi equation (7) give

ω23(e1) = ω23(e2) = ω12(e2) = 0, ω13(e3) ̸= 0. (36)

By combining (36) with (21), we obtain

∇̃e1e1 = ∇̃e1e2 = 0, (37a)

∇̃e2e1 = ∇̃e2e3 = 0, ∇̃e2e2 = −1

c
N, (37b)

∇̃e3e1 =
1− ck3

s
e3 ̸= 0, ∇̃e2N = −1

c
e2 (37c)

and [e1, e2] = 0. This equation and (35) give ∂s(a22) = ∂s(a23) = 0 which gives a2j = a2j(t, u)

for j = 2, 3.

Now, we define a new local coordinate system (S, T, U) by S = s, T = Φ1(t, u) and T =

Φ2(t, u), where Φ1 and Φ2 satisfy

a22(t, u)(Φ1)t + a23(t, u)(Φ1)u = 1,

a22(t, u)(Φ2)t + a23(t, u)(Φ2)u = 0,

respectively. Then, by a direct computation using (35), we obtain

e1 =
∂

∂S
, e2 =

∂

∂T
, e3 = ã32

∂

∂T
+ ã33

∂

∂U

for some smooth functions ã32 and ã33. By abusing the notation, in the rest of the proof of the

Case 2b, we put S = s, T = t, U = u, ã32 = a32 and ã33 = a33. Consequently, the first equations

in (37) give e1 = e1(u) and e′1(u) ̸= 0. Therefore, one can define an immersion α̃ : I ↪→ S31(1),
by

α(u) = (α̃ ◦ i)(u) = e1(u), (38)

where i : S3
1(1) ⊂ E4

1 is the inclusion.
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On the other hand, the second equations in (37b) and (37c) turn into ∇̃e2e2 = xtt = −1
cN

and ∇̃e2N = Nt = −1
cxt, respectively. By combining these two equations, we get c2Ntt −N = 0

whose solution is given by

N(t, u) = cosh

(
t

c

)
F1(u) + sinh

(
t

c

)
F2(u). (39)

for some vector valued functions F1, F2 satisfying

⟨F1, F1⟩ = −1, ⟨F2, F2⟩ = 1, ⟨F1, F2⟩ = 0. (40)

because ⟨N,N⟩ = −1. From (27), (38) and (39) we get (19). Furthermore, by the assumptions

we have ⟨∂s, N⟩ = ⟨∇̃∂s∂s, N⟩ = ⟨∂u, x⟩ = 0. By combining these equations with (19) and (40)

we get

⟨α, Fj⟩ =
⟨
α′, Fj

⟩
=

⟨
F ′
1, F2

⟩
=

⟨
F ′
2, F1

⟩
= 0, j = 1, 2. (41)

Therefore {F̃1, F̃2} is a parallel orthonormal base of N α̃I, where F̃j is defined by Fj = i∗F̃j .

Consequently, α has parallel normal bundle and the induced metric of α is Riemannian. Hence,

Np is congruent to the hypersurface given in Example 4.3 and we have the case (iii) of the

theorem.

Case 3. r = 0. In this case, the endomorphism Φ defined in Corolary 4.1 is one-to-one.

Therefore, one can define an immersion ỹ : Ω1 ↪→ S31(1) by

y(t, u) = (ỹ ◦ i)(t, u) = e1(t, u), (42)

where i : S3
1(1) ⊂ E4

1 is the inclusion. Consequently, (27) turns into (20).

On the other hand, by combining ⟨∂s, N⟩ = ⟨∂t, N⟩ = ⟨∂u, N⟩ = 0 and (20), we obtain

⟨y,N⟩ = ⟨yt, N⟩ = ⟨yu, N⟩ = 0. So, the vector field Ñ defined by N = i∗Ñ belongs to ∈ N ỹΩ1

and it satisfies ⟨Ñ , Ñ⟩ = −1. Consequently, the induced metric of ỹ is Riemannian. Hence,

Np is congruent to the hypersurface given in Example 4.4 and we have the case (iv) of the

theorem. �
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Conclusion

In this paper we study generalized constant ratio hypersurfaces. We first move the study

initiated in [6] to the Minkowski space En+1
1 with the arbitrary dimension. In Theorem 3.1 and

Proposition 3.2 we obtain several geometric properties of these class of hypersurfaces. Next,

by considering these results we focus on the hypersurfaces of the Minkowski 4-space. We prove

Theorem 4.1 which presents the complete classification of space-like generalized constant ratio

hypersurfaces in E4
1. In the future the results appearing on this paper may extend into time-like

hypersurfaces of Minkowski spaces as well as pseudo-Euclidean spaces of arbitrary index.
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